Pets Return Home Site Design

Ruff Engineering

Abigail Hubler, Ryann DuBose, Allyson Fedor, & Crockett Saline

CENE 486 Final Presentation

April 24, 2020

Purpose

CREATE:

- Site design for expansion of the kennel space
- Drainage plan for sanitary sewer runoff

Location

4555 N. Peyton Place

City: Clarkdale

County: Yavapai County

State: Arizona

Client

 Mark Happe: Co-founder of Pets Return Home Sanctuary

Figure 1: Aerial view of site location [1].

Zoning Due Diligence

Zoning ordinances considered applicable in relation to the project are as follows:

Yavapai County Designation

- RCU Includes Rural, Single-family, residences
- Allow uses of R1L, RMM, and R1 Districts
 - R1L single family residences limited to site built structures
 - RMM single family, residential properties with site built, factory built and multi-sectional manufactured homes, no single-wide manufactured homes
 - R1 Districts single family, residential properties with sit ebuilt, multi-sectional and manufactured structures

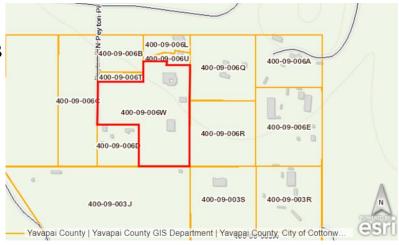


Figure 2: Parcel number and location map provided by the Yavapai County Interactive Map [2].

Geotech Field Investigation

Prior to site visit AZ 811 was contacted and a Safety and Sampling Plan were created.

In-situ data collection performed at all locations (Fig. 4)

- Test pit log of observed soil
- Grab samples of each observed soil type
- Ring samples

Figure 3 : Image of ring sample collected preserving the insitu conditions of the soil.

Figure 4: Testing Locations.

Geotech Field Investigation - Infiltration Test

- Infiltration tests at location 2, 3, and
 4 at approx. 4 ft deep
- Performed according to ADEQ -R18-9-A310 - subsection F
- Infiltration test results range from 16 to 68 minutes per inch of water infiltrated

Figure 5: Typical test pit after excavation (right) and a test pit with ongoing infiltration test (left).

Infiltration Rates						
Test Pit Location 2 3 4						
Percolation (mins./inch) 68 56 16						

Table 1: Results of infiltration tests for all site locations.

Geotechnical Lab Analysis

Tests performed:

- Soil classification ASTM D2487
- Hydrometer ASTM D7928-17
- Field moisture contents ASTM D2216
- In-situ soil density ASTM D2937

- Remolded expansion potential ARIZ 249
- Compression ASTM D2435
- Liquid limit and plasticity index ASTM D4318-17el.
- Moisture density relationship/proctor ASTM D698-12e2

Sample	1(0-2)	2(0-4)	2(PERK)	3(0-2)	3(PERK)	4(0-3)	4(3-4)	4(PERK)
	Soil Classification							
Replicate 1	SC-SM	SC	SC	SC	SC	CL	SC	SC-SM
Replicate 2	SC-SM	SC	SC	SC	SC	CL		SC-SM
Replicate 3	SC	SC	CL	SC	SC	CL		SC-SM
Final	SC-SM	SC	SC	SC	SC	CL	SC	SC-SM

Table 2: Soil classification results from samples taken at Locations 1, 2, 3, and 4.

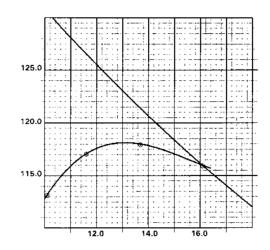
Lab Analysis - Remolded Expansion Potential

The expansion percentages that are seen in Figure (left) are in the zero swell potential, 0% to 1.5%, and moderate swell potential, 1.5% to 3%.

	REMOLDED SWELLS						
			SOIL PR	OPERTY	EXPANSION		
TEST PIT NO.	DEPTH (FEET)	SOIL CLASSIFICATION	INITIAL DRY DENSITY (PCF)	INITIAL WATER CONTENT (%)	SURCHARGE (KSF)	EXPANSION (%)	REMARKS
1	0-2	SC-SM	112.2	10	0.1	2.3	1,2
2	0-4	sc	113.3	12.7	0.1	0	1,2
2	4-5	sc	113.3	12.7	0.1	0.6	1,2
3	0-2	sc	113.3	12.7	0.1	0.2	1,2
3	4-5	sc	111.3	13.5	0.1	0.2	1,2
4	0-3	CL	113.3	12.7	0.1	1.8	1,2
4	3-4	sc	111.3	13.5	0.1	0.7	1,2
4	4-5	SC-SM	113.3	12.7	0.1	0.1	1,2

Remarks:

Table 3: Remolded Swells initial conditions and final swell potential results.


^{1.} Compacted Density (approximately 95% of ASTM D698 maximum density and -3% below optimum moisture content

^{2.} Submerged to approximate saturation

Lab Analysis - Compaction Proctor

Maximum density = 118.1 lbs/ft^3 Optimum moisture content = 13.0%

If no additional soil is used to produce grade under proposed kennel this data can be used to compare field density to determine rate of compaction and moisture content compliance.

Maximum Densit	y <u>118.1</u>	_lbs/ft3	Optimum Moisture_	13.0	_%
Computed Max	118.1	lbs/ft3	Computed Opt	13.0	%
ASTM Corr Max	118.1	_lbs/ft3	Corr Opt	13.0	_%
AASHTO Corr Max	118	lbs/ft3	Corr Opt _	13	_%
ARIZ Corr Max	118.1	_lbs/ft3	Corr Opt	13.0	_%

Figure 6: Compaction proctor results (unit weight and optimum moisture).

Field Investigation - Existing Slab

Existing Slab Investigation Results:

- 4-5 inch thick slab-on-grade
- No Foundation
- Undermined Base
- Underlying soils in moist to wet conditions

Figure 7: Measurement of slab thickness

Slab on Grade Analysis

Meyrerhof's shallow foundation was observed to determine the bearing capacity of the existing surface (see Equations left).

Results show:

Net ultimate bearing capacity = 21,000 lb

Factor of Safety = 3

Net stress = 7,000 pounds.

Equation 1: Meyerhof Shallow Foundation Bearing Capacity

$$q_u = c'N_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qd}F_{qi} + \frac{1}{2}\gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

 q_u = Net ultimate bearing capacity

C' = Cohesion

q = effective stress at the level of the bottom of the foundation

 γ = unit weight of soil

B =width of foundation

 F_{cs} , F_{ad} , $F_{\gamma s}$ = shape factors

 F_{cd} , F_{ad} , F_{vd} = depth factors

 F_{ci} , F_{qi} , $F_{\gamma i}$ = load inclination factors

 N_c , N_q , N_{γ} = bearing capacity factors

Equation 2: The Gross Allowable Load

$$q_{all} = q_u/FS$$

 q_{all} = Net stress increase on soil

 q_u = Net ultimate bearing capacity

FS = Factor of safety

Surveying

Equipment used:

- Nikon Total Station
- Rod and Prism
- Nomad Data Collector
- Tripod

Figure 8: Topographic Map of site.

Figure 9: Septic tank and concrete pad location on site.

Hydrology

- Flow Routing
 - Contours suggest flow seen in Figure 10
- Weighted Curve Number
- Time of Concentration
- Storm Event Runoff
 - Yavapai County Drainage Design Manual

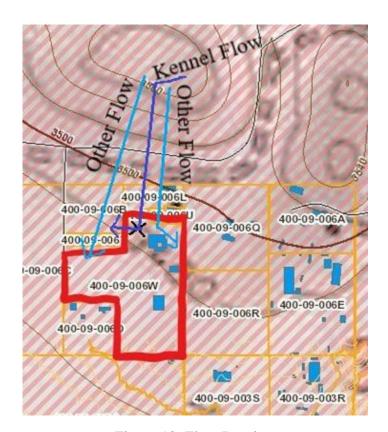


Figure 10: Flow Routing

Hydrology

Table 4: Weighted Curve Number

Percentage	Waighted C			
Natural Desert Rangeland	Weighted C			
66%	16%	16%	2%	0.58
0.48				
	Runoff Coefficie	nt		

Table 5: Time of Concentration

Time of Concentration	30 min
Time of Concontration	oo miin

Table 6: Storm Event Runoff

Flow Through Kennels				
Storm (yr)	Q (cfs)			
1	0.57			
2	0.74			
5	1.00			
10	1.21			
25	1.53			
50	1.79			
100 2.07				

Decision Matrix

Criteria weight based on ability to affect the client's suggested importance.

Design's ranked; "one" being the design that best met the criteria and "three" being the design that least met the criteria.

Criteria weight and design rank were multiplied and summed together to give a weighted score for each design.

Table 7: Decision Matrix

	Sanitation	Area Required	Construction Cost	Maintenance Cost	
Weight	23.00%	23.00%	31.00%	23.00%	Score
Septic Tank and Leach Field	1	1	2	2	1.54
Lagoon	3	2	1	1	1.69
LID Retention Pond	2	2	3	1	2.08

^{*}Lowest score means highest expectation.

Septic Tank Storage Determination

Utilized Bernoulli's Energy Equation

Assumptions made:

- Assumed 200 ft PVC pipe from well to facet at hose
- Hose length is 100 ft
- Elevation change from pump to pad is little to none assumed zero

Flow rate of 3.4 gpm found

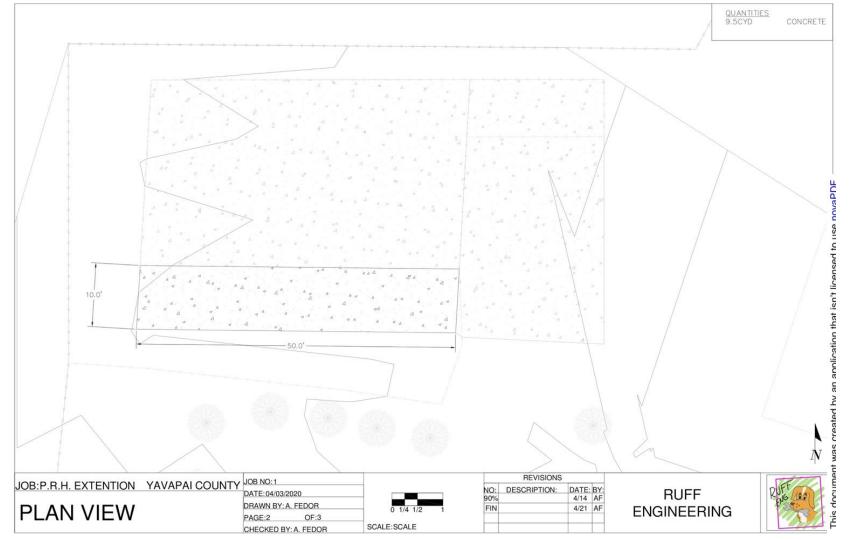
Client washes pad for 1 hour daily; utilizing 200 gallons per day

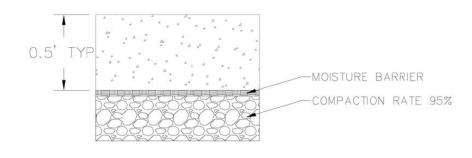
ADEQ R18-9-A314 suggests minimum design capacity be 1000 gallons

Equation 3: Bernoulli's Equation

$$\frac{P_1}{\gamma} + \frac{V_1}{2g} + Z_1 + h_p = \frac{P_2}{\gamma} + \frac{V_2}{2g} + Z_2 + h_f$$

With:


 P_n = Pressure


 V_n = Velocity

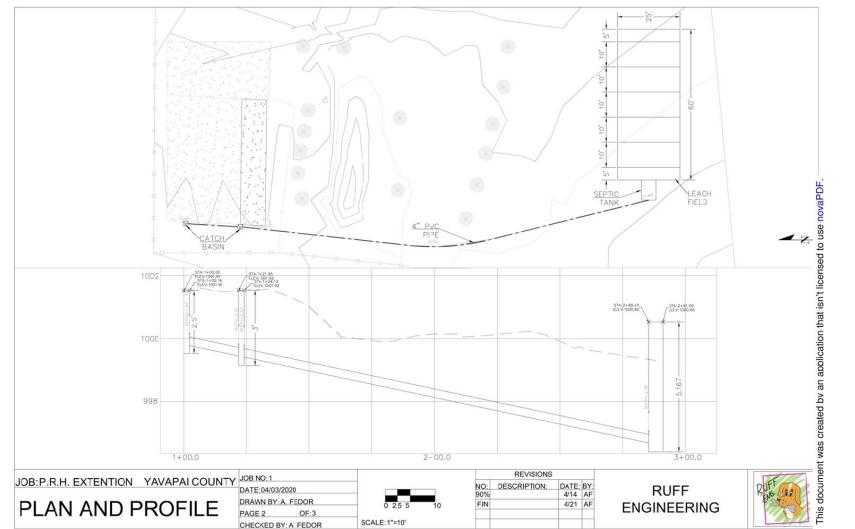
 Z_n = Elevation

 h_p = Head at Pump

 h_f = Head loss due to Friction

JOB NO:1 JOB:P.R.H. EXPANSION YAVAPAI COUNTY DATE:04/03/2020 DRAWN BY: A.FEDOR **DETAILS** PAGE 3

CHECKED BY: A FEDOR


CONCRETE SLAB CROSS-SECTION TYP. N.T.S

SCALE: N/A

REVISIONS DATE: BY: 4/14 AF 4/21 AF FIN

RUFF ENGINEERING

0 N/A N/A

SCALE: N/A

FIN

4/21 AF

ENGINEERING

DRAWN BY: A.FEDOR

CHECKED BY: A FEDOR

PAGE 3

OF:3

DETAILS

his document was created by an application that isn't licensed to use novaPDF.

Final Recommendations

Construction

- Expand 10 feet south
- Tie into existing surface
- 95% compaction of ASTM D698,
 and +/- 3% of optimum moisture
- Add a moisture barrier
- Pad thickness 5 inches

Drainage

- Add two catch basins at the low points
- o 4 inch PVC pipe
- Septic tank:
 - Width: 8 feet
 - Depth: 5 feet 8 inches
 - Height: 5 feet 2 inches
 - Volume: 1,000 gallons
- Leach field:
 - Rows: 7
 - Width: 2 rows 5 foot, 5 rows 10 foot
 - Length: 25 feet
 - Total Area: 1,500 feet ^2

Impacts of Design

Social

- More room resulting in increased exercise and mental welfare of dogs
- Little to no impact on work load for client and volunteers
- Increased health and safety of dogs and people

Environmental

- No more sesis pools at the end of the kennel
- Lower the amount of water flow into the vrede river
- Micro dust particles into the air
- Lower water flow affecting plant growth

Economical

- Dogs adopt-ability increases
- Increase revenue
- Decreasing infection/illness expenses
- Additional revenue needed to cover cost of construction/maintenance

Figure 11: Sleepy puppies after a hard day of work. Photo Credit: Abigail Autieri

Cost of Design

Table 8: Quantity and Cost

Materials	Unit price	Units	Total
Vapor Barrier (\$/per unit)	\$60.00	1	\$60.00
Cement (\$/per bag)	\$4.55	312.5	\$1,421.88
1,000 gal Septic Tank (\$/per tank)	\$1,000.00	1	\$1,000.00
4 inch PVC pipe (\$/per 10 feet length)	\$20.00	18.5	\$370.00
Steel frame for catch basin (\$/per unit)	\$240.00	2	\$480.00
Septic Tank Installation (\$/per tank)	\$5,000.00	1	\$5,000.00
Total Cost			\$8,331.88

References

[1] Google. "4555 N. Peyton Place in Clarkdale, Arizona" [Online]. Available: https://goo.gl/maps/oGF4dUhMb2ud5J6s8. [Accessed: October 6, 2019].

[2] Y. C. GIS, "Interactive Map," Yavapai County Interactive Map. [Online]. Available:

http://gis.yavapai.us/V4/map.aspx?zoom=3&x=-

112.41532745361118&y=34.780708973222005&layers=Parcels,ParcelLabels,MajorRds,MajorRdLabels,Roadctrline,RdLabels,CityBn ds,Cities,CityLbl,CountyBdy,CountyLbl,ChiZon,ChiZonLbls. [Accessed: 13-Jan-2020].

[3] Planning and Zoning Ordinance For The Unincorporated Areas of Yavapai County, Arizona. Yavapai County Board of Supervisors, 2003.

Questions?

Figure 12: Dr Bero with Angel. Photo Credit: Ryann DuBose

